JNH官网

假设检验的功效和样本数量
发布时间:2022-09-07

在假设检验中,JNH官网会使用样本中的数据来描绘有关总体的结论。首先,JNH官网会进行假设,这被称为原假设(以 H0 表示)。当您进行原假设时,您也需要定义备择假设 (Ha),其与原假设正相反。样本数据将用于判断 H0 是否可以被否定。如果其被否定,则统计结论将认为备择假设 Ha 正确。


请记住这一检验的功效,或是在原假设不正确时,原假设被否定的可能性。


它可以解释为“检验在应该拒绝原假设时拒绝原假设的能力”。如果原假设不正确,则有很高概率拒绝原假设是很有意义的。功效与类型 2 的错误相关(功效 = 1 - 类型 2 错误),请见下表。类型 2 错误是当备选假设正确时不拒绝原假设的概率。因此,确保有足够高的功效,才能保证类型 2 错误较低或“可以接受”。确保检验有足够功效的一种常用方法是收集足够的数据,因为功效的计算取决于样本数量等因子。样本数量越大,功效越高。换言之,未能收集足够的数据将导致低功效和大量类型 2 错误。



最重要的是要找到合适的样本数量。显而易见,未能收集足够的数据会导致更多的类型 2 错误。但是,收集“过多”的数据也会增加类型 1 错误,因为检验的功效会更高。因此,该检验可能会检测到与假设值的微小差异,即使该差异可能没有任何实际意义,尤其是与抽样成本有关时。检验功效的计算应当基于实际意义。 


Minitab 具有通过多种不同统计检验计算功效的功能,在下列示例中,分析人员在 Minitab 中通过单比率检验和单样本 t 检验,进行了功效和样本数量分析。


单比率检验样本数量

考虑将产品分类为好或差的制造过程,其中有 1% 的不良品率。如果不良品率上升至 3%,则会对整个组织造成严重的成本问题。他们需要确定合适的样本数量,以满足:类型 I 错误率为 0.05,检验功效为 0.80,以检测出不良品率从 1% 上升至 3% 或更高。

因为分析人员对不良品率研究感兴趣,他们使用了单比率检验。原假设和备选假设是:

Ho: P = 0.01

Ha: P > 0.01 

其中 P 为实际缺陷比率。


为了找出需要多少数据点才能达到至少0.8的功效,分析人员在 Minitab 中进行了单比率检验的功效和样本数量分析。



单样本 t 检验的样本数量

将产品分类为好或差很简单,但会损失很多信息。将好产品视为在 5 到 10 之间。假如有 2 个单元测得的数值为 4.9 和 10.01,并因而归入差的分类。假如有另外 2 个单元测得的数值为 2.3 和 14.1,并因而归入差的分类。请注意,如果只是简单的区分好和差,这两种情况是相同的。因此,如果测量产品质量特征是可行的,那么分析人员应该记录质量特征的实际值,并使用记录的数据 – 无需转换为好和差。单样本 t 检验可以用于检验总体的均值是否与目标一致。如果样本数据的均值接近“目标”,则该过程可能运行良好。如果均值不接近目标,则可能生产出缺陷产品。


例如,假设该产品特征为特定目标的孔直径。分析人员可以测量每个产品上的孔直径,并使用单样本 t 检验将均值与目标值进行比较,而不是检查 236 个产品以确定孔是否符合规格。

为了找出需要多少数据点来检测至少 80% 功效的过程均值中的 1 西格玛偏移,分析人员在 Minitab 中对一个单样本 t 检验进行功效和样本数量分析。 



计算的样本数量仅为 10。这意味着如果分析人员希望确定目标的偏离均值是否超过了 1 西格玛,则他们需要进行 10 个单位的单样本 t 检验,以获得至少 80% 的功效。


为什么会有这么大的区别? 

属性数据的假设检验需要大量样本,因为在收集数据时没有获取详细信息。另一方面,连续数据的假设检验只需较少的样本数量,因为其获取并使用了产品的详细信息。该理论不仅适用于功效。属性数据需要大量样本以用于置信区间、属性一致性分析、控制图和能力分析。

总之,重要的是进行具有足够功效的假设检验,以提供合理的机会来检测差异。功效与样本数量直接相关。Minitab 具有计算多种不同假设检验(包括试验设计)的功效的功能。


文章来源公众号:Minitab)


+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


关于JNH官网电子

JNH官网电子技术有限公司(英文名称:Emdoor Electronics Technology Co.,Ltd)是国内资深的研发工具软件提供商,公司成立于 2002 年,面向中国广大的制造业客户提供研发、设计、管理过程中使用的各种软件开发工具,致力于帮助客户提高研发管理效率、缩短产品设计周期,提升产品可靠性。

20 年来,先后与 Altium、ARM、Ansys、QT、Adobe、Visu-IT、Minitab、Testplant、EPLAN、HighTec、GreenHills、PLS、Ashling、MSC Software 、Autodesk、Source Insight、TeamEDA、MicroFocus等多家全球知名公司建立战略合作伙伴关系,并作为他们在中国区的主要分销合作伙伴服务了数千家中国本土客户,为客户提供从芯片级开发工具、EDA 设计工具、软件编译以及测试工具、结构设计工具、仿真工具、电气设计工具、以及嵌入式 GUI 工具等等。JNH官网电子凭借多年的经验积累,真正的帮助客户实现了让研发更简单、更可靠、更高效的目标。

欢迎关注“JNH官网电子”公众号

了解更多研发工具软件知识

jnh官网 jnh官网 jnh官网 jnh官网 金年会 金年会 金年会 金年会